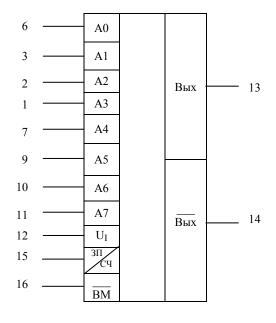

ЭТИКЕТКА


УП3.487.376 ЭТ

Микросхема интегральная 564 РУ2В Функциональное назначение – ОЗУ 256 бит

Схема расположения выводов

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход четвертого разряда кода адреса	9	Вход шестого разряда кода адреса
2	Вход третьего разряда кода адреса	10	Вход седьмого разряда кода адреса
3	Вход второго разряда кода адреса	11	Вход восьмого разряда кода адреса
4	Общий	12	Информационный вход
5	Питание, U _{CC}	13	Выход неинвертированной информации
6	Вход первого разряда кода адреса	14	Выход инвертированной информации
7	Вход пятого разряда кода адреса	15	Вход команды «запись-считывание»
8	Не используется	16	Вход команды «запрет ИС»

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Изиманаранна параматра, алинина намарання, ражим измарання	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, мВ, при: $U_{CC} = 5 \; B, 10 \; B$	U _{OL}	-	10
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{OH}	4,99 9,99	-
3. Входное напряжение низкого уровня, В, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	U_{IL}	-	1,5 3,0
4. Входное напряжение высокого уровня, В, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	U _{IH}	3,5 7,0	-
5. Напряжение функционирования, В	U cc.f	4,2	15,0
6. Ток утечки низкого уровня на входе, мкА, при: $U_{\rm CC} = 15~{\rm B}$	I _{LIL}	-	/-0,1/

Продолжение таблицы 1			
1	2	3	4
7. Ток утечки высокого уровня на входе, мкА, при: $U_{\text{CC}} \! = \! 15 \; B$	I_{LIH}	-	0,1
8. Выходной ток низкого уровня, мА, при: $U_{CC} = 4,5 \; B$ $U_{CC} = 10 \; B$	I_{OL}	1,6 2,7	-
9. Выходной ток высокого уровня, мА, при: U_{CC} = 4,5 B U_{CC} = 10 B	I_{OH}	/-0,9/ /-0,9/	-
10. Ток потребления в режиме хранения, мкA, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	I _{CCS}	- - -	5,0 10,0 20,0
11. Выходной ток низкого уровня в состоянии «выключено», мкА, при: $U_{\rm CC}$ = 10 В	I _{OZL}	-	1,0
12. Выходной ток высокого уровня в состоянии «выключено», мкА, при: $U_{\rm CC}$ = 10 В	Іогн	-	/-1,0/
13. Время цикла записи (считывания), нС, при: $U_{\rm CC} = 5~{\rm B} \\ U_{\rm CC} = 10~{\rm B}$	$t_{\mathrm{CY(WR)}} \ (t_{\mathrm{CY(DR)}})$		1500 650
14. Время выборки разрешения, нС, при: $U_{CC} = 5 \; B \\ U_{CC} = 10 \; B$	t _{A(CE)}		1200 450
15. Входная емкость, пФ	C _I	-	8,0
16. Выходная емкость, пФ	Co		16,0

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- 2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ не менее $120000\,$ ч.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

1	СВЕДЕНИЯ	IΛ	ПРИЕМ	IKE
4	СВЕДЕПИИ	ı O	TIPPIEN	IVE

Микросхемы 564 РУ2В соответствуют техническим условиям бК0.347.064 ТУ10 и признаны годными для эксплуатации.

Приняты по	ОТ		
(извещение, акт и др.)		(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка	а произв	едена	»
	•		(дата)
Приняты по	ОТ		
(извещение, акт и др.)		(дата)	
Место для штампа ОТК			Место для штампа ВП
Цена договорная			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.